8.69 \- RSS*

Automated Enforcement:

A Compendium of Worldwide Evaluations of Results

Report By: TRANSANALYTICS LLC

Lawrence E. Decina

asmorlT veleli-l

Raghavan Srinivasan, Ph.D.

Loren Staplin, Ph.D.

- Purpose
 Investigate the impact of AES deployments to address red-light-running and speeding that have been
 - Scientifically evaluated
 - Documented in the research literature

Traffic Safety Facts 2005

- Crashes at traffic signals resulted in
 - •2,950 fatalities
 - ~ 6.7% of total
 - **450,000** injuries
 - ~ 16%
 - 862,000 property damage only
 - ~ 20%

Traffic Safety Facts 2005

- Speed-related crashes* resulted in
 - 13,113 speed-related crash fatalities
 - ~ 30% of total crash fatalities
 - *Police reports note
 - Exceeding posted speed limitOR
 - Driving too fast for conditions
 - Speed not necessarily the primary cause of the crash

Goals of Automated Enforcement:

Increase drivers' perceived risk of getting a ticket

Decrease risky behaviors

Reduce crashes

- The process is similar for red light and speed enforcement deployments
- A vehicle triggers a camera
 - The image includes the license plate, driver, and often other passengers
 - Trained personnel decide whether a ticket is warranted

Types of Deployments

- Fixed/Overt
 - Marked, mounted cameras monitor traffic
- Fixed/Not quite as overt
 - A few cameras are moved among fixed locations
- Mobile/Overt
 - Generally conspicuously marked vehicles monitor a specified area
 - May be mounted on tripods (UK)
- Mobile/Covert
 - In unmarked vehicles

- Literature search revealed > 500 research reports
 - Largely red light and speed enforcement
- Screened for titles/abstracts
 - Evaluation study
 - Pre/post safety outcome measures
 - Appropriate statistical analyses

- Studies were ranked by
 - Methodology
 - Safety-related outcome measures
 - Scientific rigor
 - Confounding variables

Red Light Running

Definition

Entering an intersection after the light has turned red

Red Light Running

- Report includes 7 studies
- 6 reported safety benefits
 - Angle crashes were reduced
 - 17%- 42%
 - Rear-end crashes increased
 - 5% 51%
 - Cost/Benefit analyses indicated net benefits
- These findings are consistent with the literature

Speed

Speed deployment types

- Fixed, mobile, overt, covert
- Vehicles traveling more than preset speed trigger camera
- Image of car, driver, license plate reviewed by official

Speed

- Potential unintended consequences
 - Kangaroo effect
 - Migration

BUT

Speed reductions may spill over to areas that don't have automated enforcement equipment

Speed Enforcement

- Fixed Overt Systems
 - Goal: reduction in crashes near the enforcement site

Most scientifically rigorous:

Mountain, Hirst & Maher (2004)

- 25% fewer injury crashes w/in 500 meters upstream and downstream of the site
 - 20% due to speed reduction, 5% due to migration

Speed Enforcement

- Mobile Overt
 - Effects expected over a larger area than fixed overt
- Two studies, not well controlled
 - Crash reductions within 2 km of the camera site
 - 12-18% reduction in crashes, 22% reductions in injury crashes
 - Weaker effects up to 6 km from camera site
 - Reductions in mean and 85th percentile speeds

Speed Enforcement

Mobile Covert

- Effects expected over still wider area
- Reduce kangaroo, migration

Two Studies Indicate

- Crash reductions of 9 23% throughout corridor
- No evidence of migration or kangaroo effect
- Effects evident even in areas without automated enforcement equipment

Recommendations

General

- Plan deployments to allow reliable evaluations of their effects
 - Control for Regression to the Mean
 - Avoid including only "worst" sites
- Red Light
 - Treatment & comparison sites should have similar traffic volume, approach speeds, signal timing
 - Include crash severity measures

NHTSA www.nhtsa.gov

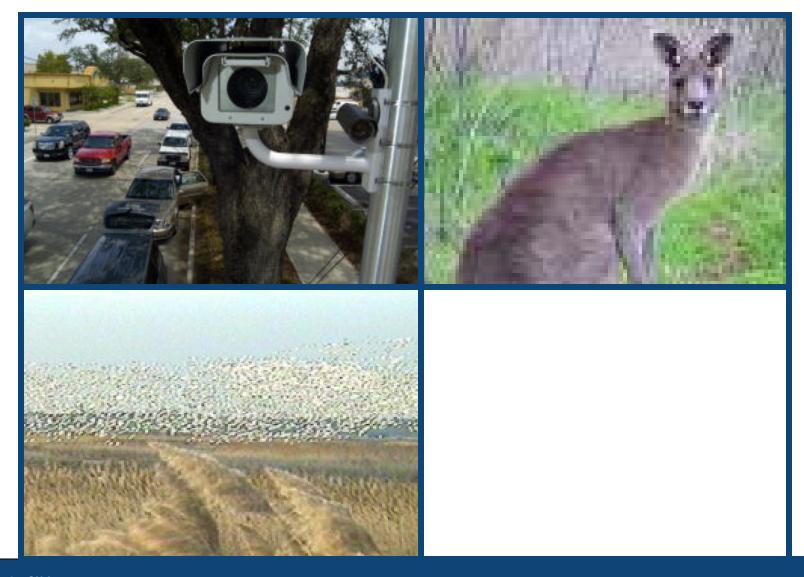
Recommendations

Speed

- Considerations for selecting comparison sites
 - Positive spillover effects
 - Migration & kangaroos
 - Especially in fixed deployments

Roadblocks

- Revenue
- Privacy
- Fairness



Conclusions

- Enlist stakeholder cooperation
 - Solicit public support
 - Extensive pre-deployment information
 - Find acceptable revenue recipient
 - Select popular sites (schools, construction zones)
 - Anticipate changes at the study sites that could influence results

Automated Enforcement Systems

